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Abstract-A simple method is presented to model large rigid-jointed lattice structures as continuous
elastic media with couple stresses using energy equivalence. In our analysis the transition from the
discrete system to the continuous media is achieved by expanding the displacements and the
rotations of the nodal points in a Taylor series about a suitable chosen origin. The strain energy
of the continuous media with couple stresses is then specialized to obtain shear deformation plate
continua. Equivalent continua for single layered grids, double layered grids and three-dimensional
lattices are then obtained.

I. INTRODUCTION

The last decade has witnessed a dramatic increase in research activities dealing with the
possibility of utilizing space for various commercial and scientific needs. Large lattice-type
structures are analyzed as candidates to meet such applications. In order to assess the
utility of such structures, complete understanding of their mechanical and thermal
behavior is needed. Continuum approximations provide practical means for achieving this
understanding.

In three recent papers[1-3] we derived the stiffness coefficients of equivalent continua
by using a building block approach consisting of obtaining the effective properties of the
smallest unit cell of the repeating structure and then using orthogonal transformation
techniques to obtain the overall properties. In Refs [1,2] we constructed the equivalent
continuum for discrete pin-jointed repetitive structures using the rod's unidirectional
property as our building block unit. In a more recent paper[3] we derived the effective
properties of rigid jointed (frame type) repetitive structures. This differed substantially from
the truss-like structures in that the influence of in-plane bending rigidities to the structure
are included. The fact that the individual rod in a rigid-jointed array can resist in-plane
bending dictated that the smallest sub-cell of the structure which was used as the building
block was no longer unidirectional and thus had to be two-dimensional substructure. The
most degenerate basic two-dimensional frame structures were found to be the (0°, 90°) and
the (0°, ±600) layups. Effective properties for these sub-cells were constructed using simple
strength of materials and approaches such as the matrix structural analysis methods[4­
6]. This resulted in two-dimensional generalization of the one-dimensional area weighted
properties needed in the analysis of pin-jointed structures[1,2]..The analysis of Refs [1­
3] gave exact results for the constitutive relations of one-dimensional (unidirectional)
layups; "strictly" two-dimensional (in the forms of (0°, 90°), (0°, ± 60°)) layups and the
"strictly" three-dimensionallayups as we defined in Ref. [2].

By invoking the classical plate theory assumptions the results of the strictly three-
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dimensional structures were successfully reduced to those of the quasi-three-dimensional
problem[2] only for the case of pin-jointed structures. Here a quasi-three-dimensional
model consists of two surface sheets separated by a thickness h and are connected by
diagonals to form a plate. In attempting to obtain the equivalent plate continuum for a
discrete frame-like structure, expressions for its general bending rigidities could not be
obtained by the techniques described in Refs [1-3]. Therefore, we need to use another
approach to develop these requirements. The energy equivalence technique presents a way
of developing such properties. As a by-product of using the energy equivalence approach,
we obtain, besides the bending rigidities, the information for the stiffness coefficients. The
results obtained by the energy method will also help in assessing the accuracy of the
building block approach described in Ref. [3].

In this paper we use the energy equivalence to construct equivalent continua for thc
actual lattice structure. An energy equivalent continuum is defined as that which has the
same amount of strain and kinetic energies stored in it as that of the original lattice
structure when both are subjected to the same loading conditions. The equivalent continuum
is characterized by its strain and kinetic energies from which the constitutive relations and
the equations of motion can be derived.

The basic concept in the energy approach is the existence of kinematic variables which
are functions of continuous spatial coordinates as opposed to those in the lattice theory
which are defined at discrete points of members. To relate both the discrete and continuum
models, a Taylor series expansion has been commonly used in constructing the equivalent
continuum.

Previous studies which utilize the energy equivalence approach, such as those carried
out by Sun and Yang[7], Noor et al.[8, 9], Bazant and Christensen[1 0, 11], and Nemeth[12]
are available in the literature. Bazant and Christensen derived an equivalent micro-polar
continuum for large grid frameworks in order to solve the extensional buckling of a multi­
story, multi-bay rectangular frame. Sun and Yang[7] established a two-dimensional in­
plane continuum model with couple stress for a (0°, 90°) layup. Noor et al. [8] constructed
the equivalent continuum of a double layer grid assuming all joints to be pinned. Also,
Noor and Nemeth[13] developed micropolar models for large repetitive beam-like planar
lattices with rigid joints. Nemeth[12] derived the strain energy of the single layer grids
with rigid joints in terms of strains and curvatures of its beam members. These are then
expressed in terms of the strains and curvatures of the continuum.

The present study utilizes the energy approach to present a simple method to model
large rigid-jointed lattices as continuous media with couple stresses. In our analysis the
transition from the discrete system to the continuous medium is achieved by expanding
the displacements and the rotations of the nodal points in a Taylor series about a suitable
chosen origin. Here basic kinematic assumptions are introduced to insure that the
assumptions used in deriving the governing equations of the modeled continuum are
satisfied. Accordingly, the number of terms retained in the Taylor series expansion will
depend upon the properties to be evaluated. This implies that one has first to determine
what kind of continuum is needed to model from the discrete lattice, before the actual
properties are derived.

In Section 2 we present our analysis followed in Section 3 by a comparison between
our approach and those reported in the literature. Finally, in Section 4 we present a variety
of applications.

2. ANALYSIS

2.1. Linearized constitutive equations for elastic materials with couple stresses
The internal energy of an elastic material without couple stresses may be expressed

as a function of the material strain tensor. Toupin[14] has shown that when couple stresses
are taken into consideration, the energy function will be a homogeneous quadratic function
of the material strain tensor cij and the curvature twist tensor Kij which are defined as



Shear deformation plate continua of large double layered space structures 1457

(1 )

(2)

where Uj are the components ofthe displacement vector and eill< is the permutation symbol.
The strain energy function describing the general constitutive equations for a linear

clastic material with couple stresses can be obtained as [15]

(3)

where W is the strain energy function. This strain energy expression would describe an
elastic material without couple stresses when all the Bjil</ and Ejil<' coefficients vanish.

2.2. Determination oj the characteristics oj the equivalent continuum models
The steps used in the construction of the equivalent continuum are given below.

(1) Isolate the smallest repeating element from the lattice.
(2) Write the stiffness matrix of this repeating element and calculate its strain energy

in terms of its nodal displacements and rotations.
(3) The displacements and the rotations of the nodal points are then expanded in a

Taylor series about a suitable chosen origin. Basic kinematic assumptions are then
introduced to insure that the assumptions used in deriving the governing equations of the
modeled continuum are satisfied.

(4) The displacement expansions obtained in step 3 are substituted in the energy
expression of the repeating element to obtain the energy expression of the equivalent
continuum, from which we can determine the characteristics of the equivalent continuum
model.

The strain energy of the repeating element of a lattice with rigid joints is given byE18]

U = L !{A}T[r(ml]T[K(ml] [reml]{A} (4)
members 2

where {A} is the vector of nodal displacements and rotations of a typical member, [Kim)]
is the elemental stiffness matrix of the typical beam in local coordinates, [rem)] is the
member transformation matrix in local coordinates, the superscripts m and T denote the
mth member in the repeating element and transposition, respectively. As mentioned earlier,
the transition from the discrete lattice to the equivalent continuous medium is done by
expanding the nodal displacements and rotations about the origin of the repeating element
by a Taylor series. The number of terms retained in the Taylor series expansion and the
kinematic assumptions used on the continuous displacement and rotation variables will
depend upon the properties to be evaluated.

This implies that we have first to determine what kind of continuum we need to model
from the discrete lattice: a linear elastic material without couple stresses where the motion
is treated as a three-dimensional problem ofstress analysis or an equivalent plate continuum
where the fundamental equations of the plate are used.

2.3. Kinematic assumptions used to model a linear elastic material' without couple stresses
Here we evaluate the stiffness coefficients, Cij"" for the equivalent elastic linear

continuum whose strain energy is

i,j, Ie, I = 1,2, 3. (5)

This will be constructed from a single layer grid or multi-layer grids. For this case, the
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nodal displacements of the repeating clement are expanded up to the second-order Taylor
series expansion, whereas the nodal rotations follow a one-term expansion. This implies
that the rotations are considered to be constant for all the nodal points of the repeating
clement. Hence, for a typical node (Xi' Yi> zJ these expansions are affected as

ov ov ov
v· = v + x·- + Y'- + z·-, 'ax 'oy 'oz

ow ow ow
w· = w + x·- + y.- + z·-

I 'ox 'oy 'Oz

(6a)

(6b)

(6c)

{)y, = {)y, {)z, = {)z (7)

where u, v, w, {)"', {)y and 0: are the displacements and rotations of continuous functions
which assume the values of the displacements and rotations at the origin of the repeating
element. Furthermore, the rotation functions 0"" Oy and 0: are the component rotations
defining the rotation of the rigid equivalent continuum, therefore, they are expressed in
terms of the displacement functions u, v, w as

() _!(ow _ ov)
'" - 2 oy oz'

o_!(ou _ow)
y - 2 oz ox'

o = !(OV _ou)
z 2 ox oy' (8)

The strain energy of the equivalent continuum is obtained by substituting the expressions
for the displacement and rotation given by eqns (6)-(8) into the expression for the strain
energy of the repeating element given in eqn (4). By differentiating according to eqn (5),
we obtain the three-dimensional stiffness coefficients of the continuum.

2.4. Kinematic assumptions used to model shear deformation plate continuum
The strain energy function for a repeating element governed by the shear deformation

plate theory is given in the appendix, eqn (A1)[9J, Notice that the plate curvature, Kmp ,

are components of the general curvature-twist tensor, "ij' defined in eqn (2); specifically,
we have

(9)

Therefore, and by examining the governing equations of the shear deformation plate
continuum, we establish the following procedure, using the superposition principle, to
evaluate the different characteristic coefficients for that continuum.

(1) Evaluate all the A ijkl stiffness coefficients as if the equivalent continuum was a
three-dimensiona1linear elastic medium with couple stresses; the stiffness coefficients A mpyp
of the reduced model are determined in terms of A ijkl as per eqn (A4) in the appendix. The
stiffness coefficients Aijkl are defined as

(10)

where h is the plate thickness. (Notice that: i, j, k, l = 1, 2, 3, and Ct, f3, y, p = 1, 2.)
(2) Evaluate the bending stiffness coefficients Djjkl and the coupling coefficients Fm/Jyp

of the equivalent continuum as if it was governed by the constitutive equations classical
plate theory. The stiffness coefficients Am3/J3 and 2A"3/J1 which represent the shear
deformation contribution to the governing equations of the plate continuum are determined
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from the first step. The coupling and bending coefficients of the reduced model are then
evaluated using eqns (AS) and (A6) in the appendix.

Specifically, we determine the strain energy expression for the equivalent continuum
as if it is a linear elastic material with couple stresses, as required by Toupin's constitutive
equations. This is followed by specializing this strain energy expression to obtain the
corresponding one for an equivalent plate continuum using the same assumptions used to
obtain the governing equations for the plate continuum from the governing equations for
the linear elastic continuum with couple stresses. This is done by retaining the following
expansion forms

e _ e iJe, ~ ~'1 - , + Xi iJx + Yi iJy + Zi iJz

(lla)

(lIb)

(lIe)

(12a)

(12b)

(12c)

where u, V, w, Ox, 0, and 0: are the displacements and rotations of continuous functions
which assume the values of the displacements and the rotations at the origin of the
repeating element. The rotation functions Ox, 0, and 0: are expressed in terms of the
displacement variables u, v and w as per eqn (8).

The strain energy of the equivalent linear elastic continuum with couple stresses is
obtained by substituting the above expressions for the displacements and rotation
expansions into the expression of the strain energy of the repeating element given in eqn
(4). In order to obtain the equivalent classical continuum plate from the linear elastic
media with couple stresses, one has to impose the following two assumptions on the
expression of the strain energy of that media: firstly, by assuming bending to occur in the
x-y plane only, some terms in the curvature-twist tensor of the elastic media do not
contribute to the strain energy of that model and will be nonexistent. These terms are

iJ2u iJ2u iJ2v iJ2v iJ2w iJ2w
iJy2' iJxiJy' iJx2 ' iJxiJy' iJyiJz' iJxiJz'

Secondly, following the classical plate theory assumption, the transverse shear strains £23

and £13 are negligible. These lead to the following constraints
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au ow
GZ - ax'

ov ow
oz - oy' (13)

The expressions for the rotation functions thus become

(14)

The plate curvatures are expressed as[ 16]

(15)

Using relations (13) and (14) into the expression of the strain energy of the linear elastic
media with couple stresses we end with the strain energy of the classical plate continuum.

3. COMPARISON WITH OTHER ENERGY METHODS

At this point, we would like to compare our energy equivalence approach for
continuum modeling of the large discrete structures with those reported in the literature.

(I) Nemeth[12] derived the strain energy of the single layer grid in terms of its beam
member's strains and curvatures, and consequently expressed it in terms of the strains and
curvatures of the continuum.

(2) Noor et al.[9] derived the equivalent continuum for double layer grids with pinned
joints. The strain energy of the plate continuum was obtained by replacing the axial strain
in each member of the repeating element by its expression in terms of the strain components
in the coordinate directions evaluated at the center of each member; and then expanding
these strain components in Taylor series about a suitably chosen origin.

(3) Noor et al.[S] derived the equivalent continuum for double layer grids with pinned
joints using an approach similar to the one proposed here. In their theory, a linear variation
in the normal coordinate z was assumed for the displacement components; the nodal
displacements were then expanded in a two-term Taylor series expansion. Therefore, at a
typical node (Xi> Yi' Zi) of the repeating element they obtained, as an example, the following
expression for the nodal displacement, Wi in the z direction

(16a)

and rearranging terms they obtained

(16b)

The difference between both approaches can be seen by comparing eqn (16b) with eqn
(llc).

Here we would like to add that it is easier to write the strain energy of the repeating
element in terms of its nodal displacements than writing it in terms of its beam member's
strains and curvatures; furthermore, the modeling of linear elastic media with couple
stresses for large lattice structures with rigid joints has not been presented before.
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Fig. 1. Four different single layer lattice grids.

4. APPLICATIONS

4.1. Single layer grids
In this section an application of the energy method to determine the characteristics

of the equivalent plate continuum of single layer grids is presented. The grids are considered
to be rigidly connected and to have both bending and torsional rigidities. We notice here
that the terms containing (O/oz) and (02/0Z 2) in the expansion of the nodal displacements
and rotations do not appear since all the grid joints lie in the same plane.

The repeating element for the (0°, 90°) grid, the triangular mesh grid, the diagonally
braced mesh grid and the hexagonal mesh grid (Figs l(a)-(d)) at any arbitrary point are
shown in Figs 2(a)-(d). The areas of the repeating element for these mesh grids are L 2,

(.J3L2)/2, 2L2 and (3.J3L2)/2, respectively.
The stiffness coefficients and the bending rigidities of the equivalent plate continuum

for the (0°, 90°), (0°, ±600
) and (0°,90°, ±45°) lattices are given in Table 1. The stiffness

coefficients and the bending rigidities characterizing the equivalent plate continuum for
the hexagonal planar lattice are found to be one third of those corresponding to the
(0°, ±600

) layup. This result, obtained using the energy equivalence, confirms the results
obtained in Ref. [17] using the "building block" approach.

4.2. Three-dimensional structures and double layered structures
In our analysis we shall differentiate between the three-dimensional structures and

the double layered structures. The representative candidate in our study is the octetruss
structure[18]. We shall first obtain the properties of its equivalent linear elastic continuum
without couple stresses. After that, we shall model the plate continuum of the double
layered tetrahedral grid (which is the quasi-three-dimensional model of the octetruss
structure).
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Fig. 2. Repeating elements for the (0°,90°), (0°, ±600
), (0°,90°, ±45°) and the hexagonal grids.

Table I. Stiffness coefficients (or plate continuum (rom single layered grids

(0°,90°) Grid

fA
T

o

6EI.
V
~
L3

~
L

o

GJ
2L

(0°, ±60°) Grid

Y2fA 3J3 fl •
4 L + L3

:l1 fA _ 3J3 EI.
4 L L3

:l1 EA 3";3 EI.
4 L + L 3

3J3 Ez
L3

'Y!.~ :l1 GJ
4 L + 4 L

~~_:/2GJ
4 L 4 L

~~ :/2GJ
4 L + 4 L

(0°,90°, ±45°) Grid

fA :l2 E.dAd Y2 Ed/.,
T+ 4 T+ 2 V

:l2 E.dAd _ Y2 Ed/••
4 L 2 L3

6EI. ::E EdAd
V+4L

3 Y2 E
d

/
"

L3 + 4 L3

~ :l2 Ed/
" :l2 GdJd

L+4 L+4 L

:l2 Ed/" _l!:. GdJd
4 L 4 L

GJ ::E Ed/"
2L + 4 L

4.2.1. Three-dimensional octetruss structure. This structure is shown in Fig. 3. We shall
assume that all the beams have the same geometric properties. In view of the periodic
nature of the structuring, we shall focus attention on joint (Xi> Yi> til. A typical beam
assembly element at this point is displayed in Fig. 4.

In order to derive the effective stiffness properties of this repeating element, we have
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Fig. 3. Three-dimensional octetruss structure.

Fig. 4. Repeating element of the octetruss structure.

1463

to determine the directions of the principal axes of the CroSII sections of its beam elements,
Oy and Oz, with respect to the fixed directions X t, X 2 and X 3' The member transformation
matrix in local coordinates, [f], (of order 12 x 12) is given as[16]

[

[T]

[f] =
[T]

[T]
.(17)

where ['11 represents the matrix of direction cosines of the Ox, Oy and Oz directions,
respectively. It is measured in the global system Xl' X 2. and X 3' and is given by
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(18)

For the repeating element of Fig. 3. the octetruss is considered to be constructed from
three single squared layers having a different orientation in space. The local Oz principal
axis of each beam is defined to be the one which is perpendicular to the single layer grid
containing that particular beam. Therefore. and with reference to Fig. 3, the coordinates
of the seven nodes of the repeating element are given in Table 2.

Table 2
Joint XI x2 X3

1 0 0 0
2 L 0 0
3 L/2 LJ3/2 0
4 L/2 -LJ3/2 0
5 o - LJ3/3 LJ2/J3
6 L/2 LJ3/6 LJ2/J3
7 -L/2 LJ3/6 LJ2/J3

The matrices of the direction cosines, [T], for the different beam members in this element
are given by

1 0 0
[T]1-2 = 0 -1/-.}3 -.}2/-.}3

0 --.}2/-.}3 -1/-.}3

1/2 -.}3/2 0
[T]1-3 = -1/2 -.}3/6 -.}2/-.}3

1/-.}2 -1/-.}6 1/-.}3

1/2 --.}3/2 0
[T]1-4 = -1/2 --.}3/6 --.}2/-.}3

1/-.}2 1/-.}6 -1/-.}3

0 -1/J3 2/-.}3
[T]I-5 = -1 0 0

0 --.}2/-.}3 -1/-.}3

1/2 -.}3/6 -.}2/-.}3
[T]1-6 = 1/2 --.}3/2 0

1/-.}2 1/-.}6 -1/-.}3

-1/2 -.}3/6 -.}2/-.}3
[T]1-7 = -1/2 --.}3/2 0

1/-.}2 -1/-.}6 1/-.}3

The analysis described in Section 2 is carried out. The strain energy of the repeating
element is evaluated; the nodal displacements and rotations are expanded according to
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Fig. 5. Quasi-three-dimensional octet russ structure corresponding to Fig. 3.

the two- and one-term expansion, respectively, with respect to the nodal joint (Xh Yh Zi) as
the suitable chosen origin; the continuous rotation functions are expressed according to
eqn (8) and finally the effective properties of the equivalent elastic linear continuum without
couple stresses are evaluated. These are found identical to those reported in Refs [3, 17].

We have confirmed[17] that for the repeating element of Fig. 4, the structure can be
considered to be constructed from four (0°, ±600) layups with the restriction of using
circular cross-sectional beams. This was actually done and the results were found to be
identical to those reported in Ref. [17].

4.2.2. Double layered grids. The double layered grids are also known to be the quasi­
three-dimensional structures[2]). Here, the double layered tetrahedral grid is studied. It
consists of two parallel layers of (0°, ± 60°) beams connected by diagonal members which
form three-sided pyramids as shown in Fig. 5. In this double layered grid, all the members
have the same length L. In order to differentiate between the role of the upper and lower
chords and the diagonals, we shall assume that the two layers and the diagonals have
different geometric and material properties from each other. If the upper and lower layers
and the diagonals are designated by the subscripts 1,2 and d, respectively, their geometric
properties will be designated by (AI' I ylt I: t , Jd, (A 2 , I y2 , 1.2 , J 2 ) and (Ad' I yd , I.d , Jd),
respectively, while their material properties are designated by (E I , G I ), (E 2 , G2) and (Ed' Gd),
respectively.

Since we intend to derive the characteristics of the equivalent plate continuum for this
quasi-three-dimensional structure, we must have the origin of its repeating element at the
middle of the distance separating its upper and lower layers. The equivalent plate continuum
for this structure is derived as if it was constructed from three different (0°,90°) single
layers. The area of the repeating element of the double layered grid shown in Fig. 6 is
(J3L 2 )/2.

The strain energy of the repeating element is evaluated.. The nodal displacements and
rotations are expanded according to the three- and two-term expansions, respectively; the
continuous rotation functions are expressed according to eqn (8); the assumptions of the
classical plate theory are introduced and finally, the effective properties of the equivalent
plate continuum are evaluated. Those properties are listed in Table 3.

5. SUMMARY AND CONCLUSIONS

Energy and equivalence techniques were used to construct equivalent continuous
elastic media with couple stresses for large rigid-jointed lattice structures. The strain energy
of these media was then specialized to obtain the equivalent shear deformation plate
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Fig. 6. The repeating element for the double layer tetrahedral grids.

continua. The transition from the discrete system to the continuous media was done by
expanding the displacements and the rotations of the nodal points of the representative
repeating element in a Taylor series about a suitable chosen origin. Basic kinematic
assumptions were introduced to insure that the assumptions used in deriving the governing
equations of the modeled plate continuum were satisfied.

The stiffness coefficients and the bending rigidities of the derived plate continuum
were expressed in terms of the geometrical and material properties of the lattice elements.
The geometrical properties included the cross-sectional area, the two principal cross­
section bending rigidities and the cross section torsional rigidity of the elements. The
material properties consisted from the modulus of elasticity and the shear modulus of the
materials forming the elements.

To illustrate our method, we derived the equivalent shear deformation plate continuum
for the double layered tetrahedral grids. We notice that the characteristics describing this
continuum (Table 3) constitute a modification of our previously reported results[2]. This
is reflected by the appearance of the bending and torsional rigidities of the lattice elements,
in the effective properties of the equivalent plate continuum. Examination of the results in
Table 3 indicates that C I212 = (Cllll - Cll22)/2, F I212 = (Filii - F I122)/2 and
D 1212 = (D IIII - D 112 2)/2 and hence the octetruss is transversely isotropic, as is expected.

Remark. The algebraic expressions in this analysis were obtained using the algebraic
programming system Reduce 2 written by Hearn[19].
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APPENDIX

The strain energy for a repeating element governed by the shear deformation plate theory is

I
U = 2a[A.hp£.,£yp + 2A.,33£.,£33 + 2F."p£.,K,p

+ 2A.h3£.,(2£,3) + 2F.,33£33K., + D."pK.,K,p

+ A.3,3(a.3)(2£,3) + A3333£h] (AI)

where a is the platform area of the repeating element. If the transverse normal stress resultant is neglected, then
the transverse normal strain £33 is given by

- -~ _!.E.u.. K£33 - A £,p A ,p'
3333 3333

The strain energy for the repeating element of the reduced model becomes

(A2)

+ D."pK.,K,p
+ A.3,3(2£.3)()£,3)

+ 2 A.3"(a. 3)£,,
+ 2F.hP £.,K ,p]

extensional strain energy

bending strain energy

transverse shear strain energy

transverse shear-extensional coupling

bending extensional coupling

(A3)

(the underlined terms represent the shear deformation contribution in the ~overning equations) where

(A4)

(A5)

(A6)


